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General Training Mechanism Used for Cue Combination

£, 1s the scoring function for each cue.
x iz the ground plane.
S, is the range in which 7 is varied.

e Foreach training frame &

~ Por various oy € Sy, compute yy = fiimg )

~ Fit g model 4F to observations {7015 1 Parameters
a¥ of model AF reflect belief in sccuracy of cue 4
{For mstance, when 4 5 o Gaussian, a s 85 vanamee.}

~ Compute error ¢f = Jarg ming filw) — 2 ‘t"’; where
7% i the ground trth ground plane in frame &

» Quantize model parameters a¥, for b= 1.+ | F| intn

focenters o), ek
" . R . . 3
» Cluster arrors F according 1o quantized parameters ol
amd fet o be the cluster vartance, for i = 1.+, L.

e Fit a moded O 1o observations {ci 7 1.

FIG. 2

Ground Plane Estimation With 3D Points

i, Derect FAST carners in a region of interest in the irnmuedinte foreground (middle third of the fower
fuslf of the image).
2 Mach using QRB descriptors to similar region in cthe pravious lrags.

3. Perform wiangulation to recover the 3 focation {1, v, 2} of these feature matches.
4. Height of 2 30 polat = ¥ coslp) ~ z sin{p), where p = camera picch angle (known).

& Robust {~puint RANSAC 1o sstimate ground plane height
{z} For every 312 paint
{b} beight of potat i3 O, infislize sum = 0
{c} Foor aff soxher 3D poings, find b - bl
{dy surm = sy + omp-30 ¢ (- RDY
&. Return height of paing with largest sum.

FIG.3
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LT coarpare height b and surface normad 68 = {nl el ndy

. bicindiae b to halght om mathod in 306 ol w0 cosipl, 13 w winip
{nd i detmrmined by nl and »3, using unit sorms o n}

3. Cost funcrion rompuiation:
{x} Given sy hypothesived o}, nd, compure homography botesss fwones ot dme tand o+
Ho= 82 (U o7 whare K2} is the rebive camera pose
b Mag pizels by Tame £ to frame ¢4
{e} Bitinewr intarpoluvion for subpixel accurats wwhues
{diy Counpute sum of absatuve valuss of intemity differsnre. KAD, hetween left and right frame.

£ {se NelderdMead shoplex wmethod to optimives for bl and nd.

FIG. 4

round Plane Estimation Using 2D Obiect Bounding Boxes

fat

To compute ground pitch angle r3 inn = {nd, n2, n3}
initialize o3 w calibration nl.
Cost function computation:
8. Given 3 20 bounding box, wi can computs the object height h through the
grourd plane by back-projecting 20 pixel 1o 30,
b, & prior object helght h_prior is given, for example {1.59m for 3 sedan carl.
Lise Nelder-Mead stmplax method 1o optimize for n3 thet minlmize
{h~h_prior}*2.

w

=

FIG.5
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Training a Model for Effectiveness of 3D Points Cue

{a} From training data, for each discrete bin of estimated sum, compute variance
of height errors

{bi Fit 2 curve {straight line) 1o the scatter plot of shove variance against the bin
canters

{r} Cornpute a single variance estimate for all arrors in nl and n3 {since they are
fived herel.

FiG. 6

Trainine g Model for Elfectiveness of Dense Steree Cue

{a) Fix nl and n3, for every h, compute the 1 - 1.55{-SAD)} of the corresponding
homuography mapping

{bs) Fit 2 10-Gaussian to the above curve, call its variance si.

{c} Compate histogram of height errors, binned over the varlance st

{d} Compute the variance $2 of height errors in each bin of the histogram
{e] Fit a curve {straight lingd to the scatter plot of 51 against s2.

{f} Similarly repeat {hi-{2} for il and n3,

FIG. 7
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Training 2 Model for Effectiveness of 2D Object Bounding Boxes Cue

a.  Fita mixture of Guassian model to the detection seore. The variables in the
mixture of Gaussian model are x, v, witdth and height of the 2D bounding b

b.  Record the y and height covariance sigma_y and sigma__ I in the mibture of
Gaussian model. Compute sigma_d = {sigma_y * sigma_h} / {sigma_y + sigma_h}

¢ Compute histogram of n3 srrors, binned over the variaace sigma_d.

4.  Compute the variance sigswa_e of the helght errors in each bin of the
histogram.

e, Fit a curve {straight line} 1o the scatter plot of sigma_e against sigma_d.

FIG. 8

FIG. 9
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1
ROBUST SCALE ESTIMATION IN
REAL-TIME MONOCULAR SFM FOR
AUTONOMOUS DRIVING

The present application claims priority to Provisional
Application Ser. Nos. 61/897,440 filed Oct. 30,2013, 62/026,
061 filed Jul. 18, 2014 and 62/026,184 filed Jul. 18, 2014, the
contents of which are incorporated by reference.

BACKGROUND

The present invention relates to systems for processing
structure from motion (SFM).

Vision-based structure from motion (SFM) is rapidly gain-
ing importance for autonomous driving applications.
Monocular SFM is attractive due to lower cost and calibration
requirements. However, unlike stereo, the lack of a fixed
baseline leads to scale drift, which is the main bottleneck that
prevents monocular systems from attaining accuracy compa-
rable to stereo. Robust monocular SFM that effectively
counters scale drift in real-world road environments has sig-
nificant benefits for mass-produced autonomous driving sys-
tems.

A popular way to tackle scale drift is to estimate height of
the camera above the ground plane. Prior monocular SFM
works like use sparse feature matching for ground plane
estimation. However, in autonomous driving, the ground
plane corresponds to a rapidly moving, low-textured road
surface, which renders sole reliance on such feature matches
impractical. Also, conventional monocular SFM systems cor-
rect for scale by estimating ground plane from a single cue
(sparse feature matching). Prior cue combination frameworks
do not adapt the weights according to per-frame visual data.
Prior localization systems use a fixed ground plane, rather
than adapting it to per-frame visual estimates.

SUMMARY

A method for performing three-dimensional (3D) localiza-
tion requiring only a single camera by capturing images from
only one camera; generating a cue combination from sparse
features, dense stereo and object bounding boxes; correcting
for scale in monocular structure from motion (SFM) using the
cue combination for ground plane estimation; and performing
localization by combining SFM, ground plane and object
bounding boxes to produce the 3D object localization.

Implementations can use a combination of monocular real-
time SFM, a cue combination framework and object tracking
to solve the problem. Applications include autonomous driv-
ing and driving safety. Our implementations can apply one or
more of the following:

(a) Using tracked bounding boxes, determine the regions of
the image that are background (non-moving objects) and
use monocular SFM to estimate the camera pose and the
ground plane.

(b) On the objects, perform a dense optical flow estimation
to better track them.

(c) Estimate the ground plane using multiple cues: 3D
points, dense stereo and 2D object bounding boxes.

(d) Learn models that indicate per-frame relative impor-
tance of various cues.

(e) Combine the ground plane estimates within a Kalman
filter mechanism.

(f) Estimated ground plane is used to correct the monocular
SFM scale drift.

(g) Estimated ground plane is used to find the 3D bounding
box that encloses the object.
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Advantages of the above embodiments may include one or
more of the following. The data-driven framework for
monocular ground plane estimation achieves outstanding per-
formance in real-world driving. This yields high accuracy and
robustness for real-time monocular SFM over long distances,
with results comparable to state-of-the-art stereo systems on
public benchmark datasets. Further, we also show significant
benefits for applications like 3D object localization that rely
onan accurate ground plane. Other advantages of our solution
may include the following:

(a) More accurate (since we use multiple cues for scale
correction)

(b) More flexible (our framework extends across many
different types of cues)

(c) More robust (we combine cues based on their per-frame
relative importance)

(d) Faster (the system is real-time and does not use expen-
sive motion segmentation).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows one embodiment of a real-time SFM system.

FIGS. 2-8 shows in more details the modules in the system
of FIG. 1.

FIG. 9 shows one arrangement for a camera height deter-
mination.

FIG. 10 shows a computer system for executing the pro-
cesses of FIGS. 1-8.

DESCRIPTION

A real-time monocular SFM system is disclosed that cor-
rects for scale drift using a cue combination framework for
ground plane estimation, yielding accuracy comparable to
stereo over long driving sequences. Our ground plane estima-
tion uses multiple cues like sparse features, dense inter-frame
stereo and (when applicable) object detection. A data-driven
mechanism is proposed to learn models from training data
that relate observation covariances for each cue to error
behavior of its underlying variables. During testing, this
allows per-frame adaptation of observation covariances based
on relative confidences inferred from visual data. Our frame-
work significantly boosts not only the accuracy of monocular
self-localization, but also that of applications like object
localization that rely on the ground plane. Experiments on the
KITTI dataset demonstrate the accuracy of our ground plane
estimation, monocular SFM and object localization relative
to ground truth, with detailed comparisons to conventional
systems.

First, we incorporate cues from multiple methods and sec-
ond, we combine them in a framework that accounts for their
per-frame relative confidences, using models learned from
training data. The system incorporates cues from dense stereo
between successive frames and 2D detection bounding boxes
(for the object localization application). The dense stereo cue
vastly improves camera self-localization, while the detection
cue significantly aids object localization. To combine cues, a
data-driven framework is used. During training, we learn
models that relate the observation covariance for each cue to
error behaviors of its underlying variables, as observed in
visual data. At test time, fusion of the covariances predicted
by these models allows the contribution of each cue to adapt
on a per-frame basis, reflecting belief in its relative accuracy.

The significant improvement in ground plane estimation
using our framework is demonstrated below. In turn, this
leads to excellent performance in applications like monocular
SFM and 3D object localization. On the KITTT dataset, our
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real-time monocular SFM achieves rotation accuracy up to
0.0054° per frame, even outperforming several state-of-the-
art stereo systems. Our translation error is a low 3.21%, which
is also comparable to stereo and to the best of our knowledge,
unmatched by other monocular systems. We also exhibit high
robustness directly attributable to accurate scale correction.
Further, we demonstrate the benefits of our ground estimation
for 3D object localization. Our work naturally complements
tracking-by-detection frameworks to boost their localization
accuracy—for instance, we achieve over 6% improvement in
3D location error over the system.

FIG. 1 shows one embodiment of a real-time SFM system
100 to process input video. The system of FIG. 1 performs the
following:

(a) correct the scale drift in monocular SFM using a novel

cue combination framework.

(b) design several cues to estimate the ground plane height
for scale correction.

(c) design a general data-driven cue combination frame-
work that is flexible enough to handle various cues.

(d) learn specific models that indicate the relative effective-
ness of each cue for use in the above cue combination
framework.

(e) combine monocular SFM, ground plane estimation and
object tracking in an efficient, real-time framework for
highly accurate localization of both the camera and 3D
objects in the scene.

The system 100 includes a real-time monocular SFM and
object localization module 101 that can handle moving
objects without expensive motion segmentation and that is far
more accurate than prior works due to a high-accuracy scale
correction using a novel cue combination framework for
ground plane estimation. The system uses the ground plane
estimates to determine the vanishing point in road scenes.
This is used to determine the epipolar search range and con-
strain the size of matching windows, leading to greater accu-
racy in highway scenes where speeds are higher. The system
includes an object-guided feature tracking module 102. Fea-
tures are tracked on the object using a dense optical flow that
exploits the epipolar geometry constraints from monocular
SFM.

The object guided feature tracking 102 communicates with
a cue-combined scale correction module 200. Scale drift is
the most important challenge in monocular SFM. We solve it
by estimating camera height above the ground in a novel cue
combination framework. This framework combines cues
from 3D points, dense stereo and 2D object bounding boxes.
Therelative importance of each cue is adjusted on a per-frame
basis, based on visual data, using a novel framework to learn
models that relate observation covariance to error in under-
lying variables.

A ground plane estimation framework 201 is proposed that
uses cues from many sources, like 3D points, dense stereo and
2D object bounding boxes. The frame work 201 includes a
module 211 (FIG. 3) to estimate the ground plane from 3D
points arising from sparse feature matches on the road sur-
face. A dense stereo processing module 212 (FIG. 4) esti-
mates the ground plane from dense stereo between successive
frames for a planar region immediately in front of the car,
whose images are related by a homography mapping. A 2D
object bounding box detection module 213 (FIG. 5) estimates
the ground plane based on the 2D bounding box heights and
a prior on the 3D object height.

The ground plane estimation module 201 communicates
with a training ground plane cues module 202 (FIG. 2) which
learns models from training data to relate the expected belief
in the effectiveness of a cue to the observed visual data, on a
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per-frame basis. In learning module 201, a learning module
221 (FIG. 6) receives from module 211 (FIG. 3) and learns
models from training data to relate the expected belief in the
effectiveness of the 3D points cue to the observed visual data,
on a per-frame basis. A dense stereo learning module 222
(FIG. 7) receives dense stereo from module 212 and learns
models from training data to relate the expected belief in the
effectiveness of the dense stereo cue to the observed visual
data, on aper-frame basis. A 2D object bounding box learning
module 223 (FIG. 8) receives 2D object bounding boxes from
module 213 (FIG. 5) and learns models from training data to
relate the expected belief in the effectiveness of the 2D object
bounding boxes cue to the observed visual data, on a per-
frame basis. The cue combined scale correction module 200
is provided to a Kalman filter whose output is provided to the
a real-time monocular SFM 101.

A 3D localization module 300 combines information from
monocular SFM, ground plane estimation and object tracking
to produce highly accurate 3D bounding boxes around the
object, in real-time.

The system of FIGS. 1-8 provides a data-driven framework
that combines multiple cues for ground plane estimation
using learned models to adaptively weight per-frame obser-
vation covariances. Highly accurate, robust, scale-corrected
and real-time monocular SFM with performance comparable
to stereo. The use of detection cues for ground estimation
boosts 3D object localization accuracy.

Next, the details of one implementation are discussed. We
denote a vector in R" as x=(x,, . . ., X,,)*. A matrix is denoted
as X. A variable x in frame k of a sequence is denoted as x*.

As shown in FIG. 9, the camera height (also called ground
height) h is defined as the distance from the principal center to
the ground plane. Usually, the camera is not perfectly parallel
to the ground plane and there exists a non-zero pitch angle 6.
The ground height h and the unit normal vector n=(n,,n,,n;)~
define the ground plane. For a 3D point (X,Y,Z)” on the
ground plane,

h=Y cos 6-Z sin 6. (€8]

Scale drift correction is an integral component of monocu-
lar SFM. In practice, it is the single most important aspect that
ensures accuracy. We estimate the height and orientation of
the ground plane relative to the camera for scale correction.
Under scale drift, any estimated length 1 is ambiguous up to
a scale factor s=1/1*, where 1* is the ground truth length. The
objective of scale correction is to compute s. Given the cali-
brated height of camera from ground h*, computing the
apparent height h yields the scale factor s=h/h*. Then the
camera translation t can be adjusted as t,,,,,=t/s, thereby cor-
recting the scale drift. In Section 4, we describe a novel,
highly accurate method for estimating the ground height h
and orientation n using an adaptive cue combination mecha-
nism.

Accurate estimation of both ground height and orientation
is crucial for 3D object localization. Let K be the camera
intrinsic calibration matrix. The bottom of a 2D bounding
box, b=(x,y,1)” in homogeneous coordinates, can be back-
projected to 3D through the ground plane {h,n}:

hK'b 2)

B=(B, By, B) = -,
Similarly, the object height can also be obtained using the
estimated ground plane and the 2D bounding box height.
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Given 2D object tracks, one may estimate best-fit 3D
bounding boxes. The object pitch and roll are determined by
the ground plane (see FIG. 0). For a vehicle, the initial yaw
angle is assumed to be its direction of motion and a prior is
imposed on the ratio of its length and width. Given an initial
position from (2), a 3D bounding box can be computed by
minimizing the difference between its reprojection and the
tracked 2D bounding box.

We defer a detailed description of object localization to
future work, while noting two points. First, an accurate
ground plane is clearly the key to accurate monocular local-
ization, regardless of the actual localization framework. Sec-
ond, incorporating cues from detection bounding boxes into
the ground plane estimation constitutes an elegant feedback
mechanism between SFM and object localization.

To combine estimates from various methods, a Kalman
filter is used:

*F=ax ek, p(w):N(0,0),
=H 1L p(v):NO,), 3)

In our application, the state variable in (3) is the ground
plane, thus, x=(n”, h)”. Since Inl=1, n, is determined by n, and
1, and our observation is z=(n,, ny,h)”. Thus, our state tran-
sition matrix and the observation model are given by

] )

Suppose methods i=1, . . ., m are used to estimate the
ground plane, with observation covariances U,. Then, the
fusion equations at time instant k are

=
~
T~
x
1}
o o —
o o o
o - ©
- o o

m ®

m -1
vt :[Z(Uh"] L= Uyl

i=1 i=1

Meaningful estimation of U at every frame, with the cor-
rectly proportional U/* for each cue, is essential for principled
cue combination. Traditionally, fixed covariances are used to
combine cues, which does not account for per-frame variation
in their effectiveness across a video sequence. In contrast, in
the following sections, we propose a data-driven mechanism
to learn models to adapt per-frame covariances for each cue,
based on error distributions of the underlying variables.

The system uses multiple methods like triangulation of
sparse feature matches, dense stereo between successive
frames and object detection bounding boxes to estimate the
ground plane. The cues provided by these methods are com-
bined in a principled framework that accounts for their per-
frame relative effectiveness.

In an embodiment with Plane-Guided Dense Stereo, a
region of interest (ROI) in the foreground (middle fifth of the
lower third of the image) corresponds to a planar ground. For
a hypothesized value of {h,n} and relative camera pose {R,t}
between frames k and k+1, a per-pixel mapping can be com-
puted using the homography matrix

1 6
G:R+%mT. ©
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Note that t differs from the true translation t* by an
unknown scale drift factor, encoded in the h we wish to
estimate. Pixels in frame k+1 are mapped to frame k (subpixel
accuracy is important for good performance) and the sum of
absolute differences (SAD) is computed over bilinearly inter-
polated image intensities. With p=1.5, a Nelder-Mead sim-
plex routine is used to estimate the {h,n} that minimize:

-4D), %)

il —
r;ll;n( p

Note that the optimization only involves h,n, and n;, since
PnP=1. Enforcing the norm constraint has marginal effect,
since the calibration pitch is a good initialization and the cost
function usually has a clear local minimum in its vicinity. The
optimization requires about 10 ms per frame. The {h,n} that
minimizes (7) is the estimated ground plane from stereo cue.

Next, we consider matched sparse SIFT descriptors
between frames k and k+1, computed within the above region
of interest (we find SIFT a better choice than ORB for the
low-textured road and real-time performance is attainable for
SIFT in the small ROI). To fit a plane through the triangulated
3D points, one option is to estimate {h,n} using a 3-point
RANSAC for plane-fitting. However, in our experiments,
better results are obtained by assuming the camera pitch to be
fixed from calibration. For every triangulated 3D point, the
height h is computed using (1). The height difference Ah,; is
computed for every 3D point i with respect to every other
point j. The estimated ground plane height is the height of the
point i corresponding to the maximal score q, where

8
—0.05ing = m‘_ax{z exp(—ﬂAh‘?j)}with p=>50. ®

g

The system can also use object detection bounding boxes
as cues when they are available, for instance, within the object
localization application. The ground plane pitch angle 6 can
be estimated from this cue. Recall that n,=sin 0, for the
ground normal n=(n, ,n,,n,)”. From (2), given the 2D bound-
ing box, we can compute the 3D heighth, of an object through
the ground plane. Given a prior height h, of the object, n, is
obtained by solving:

®

min(, — i)’
n3

The ground height h used in (2) is set to the calibration
value to avoid incorporating SFM scale drift and n, is setto 0
since it has negligible effect on object height.

Note: Object bounding box cues provide us unique long
distance information, unlike dense stereo and 3D points cues
that only focus on an ROI close to our vehicle. An inaccurate
pitch angle can lead to large vertical errors for far objects.
Thus, the 3D localization accuracy of far objects is signifi-
cantly improved by incorporating this cue.

Data-Driven Cue Combination is discussed next to com-
bine the above cues while reflecting the per-frame relative
accuracy of each. Naturally, the combination should be influ-
enced by both the visual input at a particular frame and prior
knowledge. We achieve this by learning models from training
data to relate the observation covariance for each cue to error
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behaviors of its underlying variables. During testing, our
learned models adapt each cue’s observation covariance on a
per-frame basis.

For the dense stereo and 3D points cues, we use the KITTI
visual odometry dataset for training, consisting of F=23201
frames. Sequences O to 8 of the KITTTI tracking dataset are
used to train the object detection cue. To determine the ground
truth h and n, we label regions of the image close to the
camera that are road and fit a plane to the associated 3D points
from the provided Velodyne data. No labelled road regions
are available or used during testing.

Each method i has a scoring function f, that can be evalu-
ated for various positions of the ground plane variables t={h,
n}. The functions f, for stereo, 3D points and object cues are
given by (7), (8) and (9), respectively. Then, Algorithm 1 is a
general description of the training

Algorithm 1 Data-Driven Training for Cue Combination

for Training frames k=1 : F do
* For various values of w = {h, n}, fit a model A
to observations (71, f;(7r)). Parameters a,* of model
A reflect belief in accuracy of cue i at frame k. (For
instance, when A is a Gaussian, a can be its variance.)
* Compute error e/ = larg min,, f;(w) — w**|, where
the ground truth ground plane in frame k is 7w**,

end for

* Quantize model parameters a;%,

bins centered at ¢;, . .., ¢

* Histogram the errors e,* according to quantized ¢/, Let

v/ be the bin variances of e, for = 1,..., L.

* Fit a model C; to observations (c/, v,).

fork=1,...,F, into L

Intuitively, the parameters a,* of model A/ reflect beliefin
the effectiveness of cue i at frame k. Quantizing the param-
eters a,* from F training frames into L bins allows estimating
the variance of observation error at bin centers c,’. The model
C, then relates these variances, v/, to the cue’s accuracy
(represented by quantized parameters c;’). Thus, at test time,
for every frame, we can estimate the accuracy of each cue i
based purely on visual data (that is, by computing a,) and use
the model C, to determine its observation variance.

Now we describe the specifics for training the models A
and C for each of dense stereo, 3D points and object cues. We
will use the notation thatie{s, p, d}, denoting the dense stereo,
3D points and object detection methods, respectively.

The error behavior of dense stereo between two consecu-
tive frames is characterized by variation in SAD scores
between road regions related by the homography (6), as we
independently vary each variable h, n, and n,. The variance of
this distribution of SAD scores represents the error behavior
of the stereo cue with respect to its variables. Recall that the
scoring function for stereo, £, is given by (7). We assume that
state variables are uncorrelated. Thus, we will learn three
independent models corresponding to h, n; and n,.

For a training image k, let {hk /A*} be the ground plane
estimated by the dense stereo method, by optimizing f_in (7).
We first fix n,=A,* and n,=f,* and for 50 uniform samples of
h in the range [0.5 ¥, 1.50%], construct homography map-
pings from frame k to k+1, according to (6) (note that R and
t are already estimated by monocular SFM, up to scale). For
each homography mapping, we compute the SAD score f_(h)
using (7). A univariate Gaussian is now fit to the distribution
of f (h). Its variance, as,hk, captures the sharpness of the SAD
distribution, which reflects belief in accuracy of height h
estimated from the dense stereo method at frame k. A similar
procedure yields variances a_ ,, and as,n;‘ as corresponding to
orientation variables. Example fits are shown in FIG. 2.
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Referring to Algorithm labove, a, L, nlk, & s *are precisely
the parameters a/* that indicate accuracy of the stereo cue at
frame k.

The Learning of the model C, is detailed next. For frame k,
lete, S=Ih*-h*k| be the error in ground helght relative to
ground truth. We quantize the parameters a_,  into L=100
bins and con51der the resulting histogram of e, hk. The bin
centers ¢, , ! are positioned to match the density ofa, , *(thatis,
we distribute F/L errors e, ¥ within each bin). A similar
process is repeated for n, and n,. The histograms for the
KITTI dataset are shown in FIG. 3. We have now obtained the
¢,/ of Algorithm 5.1.

Next, we compute the variance Vs,hl of the errors within
each binl, for1=1, . . ., L. This indicates the observation error
variance. We now fit a curve to the distribution of v, ,, versus
¢, 4> which provides a model to relate observation variance in
h to the effectiveness of dense stereo. The result for the KITTI
dataset is shown in FI1G. 4, where each data point represents a
pair of observation error covariance VS,hZ and parameter cs,hl.
Empirically, we observe that a straight line suffices to produce
agood fit. A similar process is repeated forn, and n;. Thus, we
have obtained models C; (one each for h, n, and n;) for the
stereo method.

Similar to dense stereo, the objective of training is again to
find a model that relates the observation covariance of the 3D
points method to the error behavior of its underlying vari-
ables. Recall that the scoring function f, is given by (8).

We observe that the score q returned by £, is directly an
indicator of belief in accuracy of the ground plane estimated
using the 3D points cue. Thus, for Algorithm 5.1, we may
directly obtain the parameters apk:qk, where q¥ is the optimal
value of , at frame k, without explicitly learning a model A,,.

The remaining procedure mirrors that for the stereo cue.
Let h “be ground height estimated at frame kusing 3D points,
that 1 1s the optimum for (8). The error e, , * is computed with
respect to ground truth. The above a ,h)‘ are quantized into
L=100 bms centered at ¢, , “and a histogram of observation
errors e, , *is constructed. A model C, may now be fit to relate
the observatlon variances v, ” " at each bin to the correspond-
ing accuracy parameter ¢, ;. 7’ As shown in FIG. 4, a straight
line fit is again reasonable

We assume that the detector provides several candidate
bounding boxes and their respective scores (that is, bounding
boxes before the nonmaximal suppression step of traditional
detectors). A bounding box is represented by b=(x,y,w.h,)%,
where x, y is its 2D position and w,h,, are its width and height.
The error behavior of detection is quantified by the variation
of detection scores o with respect to bounding box b.

Ourmodel A /is amixture of Gaussians. At each frame, we
estimate 4x4 full rank covariance matrices Z,, centered at1,,,,
as:

N 2 (10)
min

M 1 1
i E ZAm6728mnzm fmn _ g |
Amstims Zm —

T A=l

where €,,,=b,-LL,,, M is number of objects and N is the
number of candidate bounding boxes (the dependence on k
has been suppressed for convenience). Example fitting results
are shown FIG. 6. It is evident that the variation of noisy
detector scores is well-captured by the model A /.

Recall that the scoring function f ;0f (9) estimates n;. Thus,
only the entries of 2, corresponding toy and h, are significant
for our application. Let 0, and o, be the corresponding diago-
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nal entries of the 2, closest to the tracking 2D box. We
combine them into a single parameter,

T,
y
dy= 2T

>
Tyt Oy,

which reflects our belief in the accuracy of this cue.

The remaining procedure is similar to that for the stereo
and 3D points cues. The accuracy parameters a* are quan-
tized and related to the corresponding variances of observa-
tion errors, given by the f,; of (9). The fitted linear model C,
that relates observation variance of the detection cue to its
expected accuracy is shown in FIG. 6.

During testing, at every frame k, we fit a model A * corre-
sponding to each cue ie{s,p,d} and determine its parameters
a/that convey expected accuracy. Next, we use the models C,
to determine the observation variances.

The observation z.*=(n, *,n,*,h*)” at frame k is obtained by
minimizing f,, given by (7). We fit 1D Gaussians to the
homography-mapped SAD scores to get the values of as,hk,
amlk and as,nsk. Using the models C, estimated in FIG. 4, we
predict the corresponding variances v.*. The observation
covariance for the dense stereo method is now available as
Ulk:diag(vs,n lkSVs,n3k5 Vs,hA) .

At frame k, the observation zpk is the estimated ground
height h obtained from f,, given by (8). The value of q
obtained from (8) directly gives us the expected accuracy
parameter apk. The corresponding variance Vp’hk is estimated
from the model C, of FIG. 4. The observation covariance for
this cue is now available as Upkqlp,hk.

At frame k, the observation z*™ is the ground pitch angle
n, obtained by minimizing f ,, given by (9), for each object
m=1, . .., M. For each object m, we obtain the parameters
a /"™ after solving (10). Using the model C, of FIG. 6, we
predict the corresponding error variances v /™. The observa-
tion covariances for this method are now given by
U= .

Finally, the adaptive covariance for frame k, U¥, is com-
puted by combining U %, Upk and the U /> from each object
m. Then, our adaptive ground plane estimate z* is computed
by combining z.*, zpk and z, /™, using (5).

Thus, the ground plane estimation method uses models
learned from training data to adapt the relative importance of
each cue—stereo, 3D points and detection bounding boxes—
on a per-frame basis. In consideration of real-time perfor-
mance, only the dense stereo and 3D points cues are used for
monocular SFM. Detection bounding box cues are used for
the object localization application where they are available.

The instant system’s accurate ground plane estimation
allows monocular vision-based systems to achieve perfor-
mance similar to stereo. In particular, we have shown that it is
beneficial to include cues such as dense stereo and object
bounding boxes for ground estimation, besides the traditional
sparse features used in prior works. Further, we proposed a
mechanism to combine those cues in a principled framework
that reflects their per-frame relative confidences, as well as
prior knowledge from training data.

Our robust and accurate scale correction is a significant
step in bridging the gap between monocular and stereo SFM.
We believe this has great benefits for autonomous driving
applications. We demonstrate that the performance of real-
time monocular SFM that uses our ground plane estimation is
comparable to stereo on real-world driving sequences. Fur-
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ther, our accurate ground plane easily benefits existing 3D
localization frameworks, as also demonstrated by our experi-
ments.

The invention may be implemented in hardware, firmware
or software, or a combination of the three. Preferably the
invention is implemented in a computer program executed on
a programmable computer having a processor, a data storage
system, volatile and non-volatile memory and/or storage ele-
ments, at least one input device and at least one output device.

By way of example, a block diagram of a computer to
support the system is discussed in FIG. 10. The computer
preferably includes a processor, random access memory
(RAM), a program memory (preferably a writable read-only
memory (ROM) such as a flash ROM) and an input/output
(I/0) controller coupled by a CPU bus. The computer may
optionally include a hard drive controller which is coupled to
a hard disk and CPU bus. Hard disk may be used for storing
application programs, such as the present invention, and data.
Alternatively, application programs may be stored in RAM or
ROM. I/O controller is coupled by means of an I/O bus to an
1/O interface. I/O interface receives and transmits data in
analog or digital form over communication links such as a
serial link, local area network, wireless link, and parallel link.
Optionally, a display, a keyboard and a pointing device
(mouse) may also be connected to I/O bus. Alternatively,
separate connections (separate buses) may be used for /O
interface, display, keyboard and pointing device. Program-
mable processing system may be preprogrammed or it may be
programmed (and reprogrammed) by downloading a pro-
gram from another source (e.g., a floppy disk, CD-ROM, or
another computer).

Each computer program is tangibly stored in a machine-
readable storage media or device (e.g., program memory or
magnetic disk) readable by a general or special purpose pro-
grammable computer, for configuring and controlling opera-
tion of a computer when the storage media or device is read by
the computer to perform the procedures described herein. The
inventive system may also be considered to be embodied in a
computer-readable storage medium, configured with a com-
puter program, where the storage medium so configured
causes a computer to operate in a specific and predefined
manner to perform the functions described herein.

The invention has been described herein in considerable
detail in order to comply with the patent Statutes and to
provide those skilled in the art with the information needed to
apply the novel principles and to construct and use such
specialized components as are required. However, it is to be
understood that the invention can be carried out by specifi-
cally different equipment and devices, and that various modi-
fications, both as to the equipment details and operating pro-
cedures, can be accomplished without departing from the
scope of the invention itself.

What is claimed is:

1. A method for performing three-dimensional (3D) local-
ization requiring only a single camera, comprising:

capturing images from only one camera;

generating a cue combination from sparse features, dense
stereo and object bounding boxes;

correcting for scale in monocular structure from motion
(SFM) using the cue combination for estimating a
ground plane;
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performing localization by combining SFM, ground plane
and object bounding boxes to produce a 3D object local-
ization, and

back-projecting through a ground plane {h,n}:

hK'b

- T _
B =B, By, B)) =~y

where K is a camera intrinsic calibration matrix and b=(x, y,
1)7is a bottom of a 2D bounding box in homogeneous coor-
dinates.

2. The method of claim 1, comprising combining monocu-
lar real-time SFM, a cue combination and object tracking for
3D localization.

3. The method of claim 1, comprising with tracked bound-
ing boxes, determining regions of an image that are back-
ground (non-moving objects) and using monocular SFM to
estimate a camera pose and the ground plane.

4. The method of claim 1, comprising performing a dense
optical flow estimation on the object.

5. The method of claim 1, comprising estimating the
ground plane using 3D points, dense stereo and 2D object
bounding boxes.

6. The method of claim 1, comprising learning one or more
models that indicate per-frame relative importance of cues.

7. The method of claim 1, comprising combining ground
plane estimates within a Kalman filter.

8. The method of claim 1, comprising applying an esti-
mated ground plane to correct a monocular SFM scale drift.

9. The method of claim 8, wherein the estimated ground
plane is used to find a 3D bounding box that encloses the
object.

10. The method of claim 1, comprising performing autono-
mous driving and driving safety with the 3D localization.

11. A vehicle, comprising:

a single camera;

a motor coupled to the single camera for moving the
vehicle; and

means for three-dimensional (3D) localization of traffic
participants including vehicles or pedestrians, said
means including:

means for generating a cue combination from sparse fea-
tures, dense stereo and object bounding boxes;

means for correcting for scale in monocular structure from
motion (SFM) using the cue combination for estimating
a ground plane;

means for performing localization by combining SFM,
ground plane and object bounding boxes to produce a 3D
object localization, and back-projecting through a
ground plane {h,n}:

hK'b

B=(B., By, B, = -

where K is a camera intrinsic calibration matrix and b=(x, y,
1)7 is a bottom of a 2D bounding box in homogeneous coor-
dinates.

12. The method of claim 1, wherein methodsi=1, ... ,mare
used to estimate a ground plane, with observation covariances
U,, comprising determining fusion at time instant k as:
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m -1 m
Uk = [g(uiﬂ’l] 2= ngl(uikflz?-

13. The method of claim 1, comprising determining Plane-
Guided Dense Stereo, including determing a region of inter-
est (ROI) in a foreground corresponding to a planar ground.

14. The method of claim 13, for a value of {h,n} and a
relative camera pose {R, t} between frames k and k +1,
comprising determining a per-pixel mapping using a homog-
raphy matrix

1
G=R+ %mT.

15. A method for performing three-dimensional (3D)
localization of traffic participants including vehicles or
pedestrians, requiring only a single camera, comprising:

capturing images from only one camera;

generating a cue combination from sparse features, dense

stereo and object bounding boxes

correcting for scale in monocular structure from motion

(SFM) using the cue combination for estimating a
ground plane;

performing localization by combining SFM, ground plane

and object bounding boxes to produce a 3D object local-
ization, and

back-projecting through a ground plane {h,n}:

B=(B,, B, B) =- ﬂ
o By O WTK1h’

where K is a camera intrinsic calibration matrix and b =(x, y,

1)7is a bottom of a 2D bounding box in homogeneous coor-

dinates.

16. The method of claim 15, comprising combining
monocular real-time SFM, a cue combination and object
tracking for 3D localization.

17. The method of claim 15, comprising with tracked
bounding boxes, determining regions of an image that are
background (non-moving objects) and using monocular SFM
to estimate a camera pose and the ground plane.

18. The method of claim 15, comprising performing a
dense optical flow estimation on the object.

19. The method of claim 15, comprising estimating the
ground plane using 3D points, dense stereo and 2D object
bounding boxes.

20. A method for performing three-dimensional (3D)
localization requiring only a single camera, comprising:

capturing images from only one camera;

generating a cue combination from sparse features, dense

stereo and object bounding boxes;

correcting for scale in monocular structure from motion

(SFM) using the cue combination for estimating a
ground plane;

performing localization by combining SFM, ground plane

and object bounding boxes to produce a 3D object local-
ization

wherein methods i=1, . . . ,m are used to estimate a ground

plane, with observation covariances U, comprising
determining fusion at time instant k as:
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m -1 m
Uk = [g(uiﬂ’l] 2= UZ(U?)’%?-

21. A method for performing three-dimensional (3D)
localization of traffic participants including vehicles or
pedestrians, requiring only a single camera, comprising:

capturing images from only one camera;

generating a cue combination from sparse features, dense

stereo and object bounding boxes

correcting for scale in monocular structure from motion

(SFM) using the cue combination for estimating a
ground plane; and

performing localization by combining SFM, ground plane

and object bounding boxes to produce a 3D object local-
ization, whereinmethodsi=1, . ..,mareused to estimate
a ground plane, with observation covariances U;, com-
prising determining fusion at time instant k as:

m

m -1
vt :[Z(Uh"] L= Uyl

i=1 i=1
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22. A vehicle, comprising:

a single camera;

a motor coupled to the single camera for moving the
vehicle; and

means for for three-dimensional (3D) localization of traffic
participants including vehicles or pedestrians, said
means including:

means for generating a cue combination from sparse fea-
tures, dense stereo and object bounding boxes;

means for correcting for scale in monocular structure from
motion (SFM) using the cue combination for estimating
a ground plane;

means for performing localization by combining SFM,
ground plane and object bounding boxes to produce a3D
object localization, and

wherein methods i=1, . . . ,m are used to estimate a ground
plane, with observation covariances U, comprising
determining fusion at time instant k as:

m -1 m
Ut = [;](U;k)’l] 2= ngl(uikflz?-



